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;j Finite element algorithms are presented for the where p is the constant density, we have that, for

approximate solution of the streamfunction-vorticity i =

equations of steady incompressible viscous flows. Both
the linear Stokes and the nonlinear Navier-Stokes 0- Vp. do (vu-u.Vu+f)-T do.
equations are considered. The methods discussed re- p - -

quire low continuity finite element spaces and do not r r
require any artificial specification of the vorticity i
at solid boundaries. Particular attention is paid to Since Au.T - u/an whenever div u - 0 and
methods for multiply connected domains and to

theoretical and computational estimates for the u*Vu-T wun + ;(u-u)/2]/;T, we then have that

accuracy of the algorithms. Brief consideration is
also given to three dimensional problems, to exterior (v Ln- --+f-.)do - 0 for i "1
problems, and to the recovery of %&he pressure field. r an

I 1- Formulations Ii
If Thus (1,2,5,6, and 8) are the governing equations and

The stationary Navier-Stokes equations, written in side conditions which are to determine the functions

terms of the streamfunction i and the vorticity wo, and w and the constants ai , i - 1i..m.

are given by
Weak Formulation

Alp-- in (1)

UWe define the function spaces
and

-,A, + (a-- a ) curl f in Q (2) H - L2(1); c L2(0). ,B,p,r E Z
+2I -viu ay ax ax ay' axS~ ( aO ay-~- L Sn8,8

where in (1) and (2) V is the kinematic viscosiy, f
~ the body force, and 2 is a bounded region in R . If - p 0* .. r},

2 is multiply connected, we denote by ro its

exterior boundary and by ri, i - 1....m, the re- H-(() - o H
1
(f); * - 0 on r),

maiing parts of the boundary. See Figure 1. 0

Suppose that at these boundaries the velocity u 1
Isspecified, i.e., u - j on r - U ,, r. In order HI(n) - { E(n); -- 0 on r - ci on r±.
for a streamfunction to exist, we muse5ave that Il] a

IRd a- for I0,...,m, 
i l,..,m, ci arbitrary),

'0W4r(Q) i L
4
(fl); ' ,y ,

i.e., there is no net mass flow through any of the Va _ Hl() n W1 '4 (n), V - Hl(Q)a 'W
1 '(),

boundary pieces. It is well known that the stream-

function is unique up to an additive constant, and we and the set

fix its value by specifying it to be zero at an

arbitrary point x0  on ro" Now, let q denote a S - {0 e H( U W, '4 (a); o - q on ro;

function such that a o

o - q+c on ri. i = 1..M. m, ci arbitrary).

are given by for r E Z+, and also the dual spaces with negative
indices of the above defined spaces. For details con-

-q onF r~ 0 - qta on ri 1', (5) cerning these spaces, see [1,2).
The weak formulation of the streamfunction-

and vorticity problem which we will utilize is as follows.

n- - on r, (6) Given f E [L 2(o)] 2  and & E [H- (i)] 2  satisfying
(3), we seek i c Sa  and w c V such that

where aI, I ..1.. #,m, are constants to be determined
as part of the solution. These constants are fixed by
the requirement that the pressure be single valued, A di - curl rcurl ; d - dC (9)

i.e., the change in the pressure p around any closed h r
curve surrounding any of ri, I " 1. m, is zero.

Since the momentum equation stipulates that for all E V,

1 Vp P -u.vu + "tLu + f (7)
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I w-curl d:' + (10) The Linear Case
Cur 1v "4x ;X

We will also be interested in the linear Stokes
flow case, and it will be advantageous to sometimes* r

-curl Cd for all c V consider this case separately. For :his case, one
f r d oa a simply omits all terms arising from the nonlinear con-

vection terms in (2). Thus (2) is replaced by
w = -curl f where we have absorbed the constant V

where curl = (a/ay,-a/ax). This weak formulation is into f. Also, the weak formulation (9-10) is replaced
the most practical special case of a more general by the following. We seek w £ HI(O) and
formulation found in [1,3]. Also, this formulation was E {t E H1(Q); 0 - q on ro; - q+ci on ri, i = 1. ..m,
used in [4] to successfully compute high Reynolds ci arbitrary) such that (9) and
number driven cavity flows on nonuniform, relatively
coarse, grids. We note at the outset that the only
boundary conditions explicitly imposed on the functions I curl w.curl 0 dP = fLcurl 0 dn (13)
appearing in (9) and (10) are those corresponding toJ J -

(5). In particular, (6) is a natural boundary
condition and no boundary conditions on w are imposed I

Al on boundaries where (5) and (6) apply. Furthermore, for all a Ha(P)
the constraints (8) are also natural to the formulation
(9-10). To elucidate these points and to show the are satis~led. Note that it is no longer required for
connection between (9-10) and (1,2,5,6, and 8), let us 0,' c WI , (Q) since this inclusion results from the
proceed formally and perform appropriate integrations need to make the nonlinear term in (10) well defined.
by parts in (9-10). We are then led to Also, (8) is replaced by

N+64)) dM = (A+jL'!) do, (11) (! + f.T)da - 0 for i = . . (14)

a r ri
and

(V ' k1 + 4x 20 + curl Cf) M (12) II - Discretization
ay ax x ay

The discretization of (9-10), or of (9,13) in the

(v + f.-r)0 do. linear case, proceeds in the usual manner, with the
n " T only difficulty resulting from the inhomogeneity q in.

r the essent4al boundary condition (5). If the boundary
r consists of polygons, then one merely chooses a

Since we may choose r to alternately vanish and not finite dimensional subspace Vh C V, and then define
vanish on the boundary r, we recover, from (11), (1) the space
and (6). Also (2) is recovered from (12) by choosing
0 to vanish on the boundary r. Since * is required vh { v; o 0 on r 0 h on
to vanish on ro , the integral on the right hand side a -0ctooc ri,
of (12) vanishes on r'. By alternately choosing * h
to vanish on all ri, i - l,...,n, except on one, say i = 1,...,s, ci arbitrary}
rj, on which 4 is required to be a constant, that
same integral yields, in view of (4) and (5), that (8)
is satisfied. Then indeed the side conditions (6) and and the set

(8) are natural to the formulation (9-10), and the only h
essential boundary conditions are those on * itself, S a 0 ; - qh on o; 0 h h
i.e., (5). Again we note that no boundary condition a q+c i onrFi
on w need be imposed. c h amtrh

In addition to the ease with which the boundary i ci arbitrary)
conditions are satisfied, the formulation (9-10) also
allows for the use of low continuity, i.e., merely h h
continuous over Q, function spaces and thus greatly where q n V is an aproxination to q. For example,
simplifies its finite element discretization. Also, sinceone need define q only along boundaries, we
as a practical observation, we note that the function may choose qh on r to be the boundary interpolant
qis required only on the boundaries r ,i - 0,...,m, oh Sa and h e such that
and thus usually may be easily computed fro. (4)av s t
separately on each of these parts of the boundary.

So far we have only considered boundary conditions hh 2- curl h. curl h dfh (15)
whic correspond to a specification of the velocity at ____

all boundaries and we will continue to focus on this
case in the sequel. However, by examining (11-12), we
see that many other kinds of boundary conditions can h all h
be also implemented. For example, suppose f - 0 and I do for_ Vh ,

that wa - ;w/an - 0 on part of the boundary, say ro .  r
Such a boundary condition is useful in matching a h h h h
viscous flow to an external inviscid flow. In this -V curl w h.curl h d2 + h )C, (16)
case we retain (9-10) with f - 0 but now h +y ax ^ cy (
:,; t Hl(.2) are required to vanish on ro  and ', 0are not specified there. With c - 0 on Fo and 0 -

arbitrary there, we see that the right hand side of h h h
(12) yields u/ln - 0 as a natural boundary - - f-curl d for all h V /0
condition. s t W0

. "r,

N~ %, ,



Curved boundaries may be treated by isoparametric precludes the use of aigcrithms which iterate between

finite elements and similar techniques. The linear (15) and (16). Even so, one may choose to imbed (15-16)
Stokes equations can be discretized in the same manner into a real or pseudo-time dependent problem and then
with V

h 
C Hl(.). discretize the time derivatives, or one may choose to

The discrete weak formulation (15-16) is equiva- use a nonlinear equation solver such as Newton's method,

lent to a system of nonlinear algebraic equations. The a quasi-Newton method, or even a fixed point method.
latter is arrived at by choosing a basis {0j), Because of its robustness and ease of programming, we
j - 1,...,J, for Vh. Suppose we order these basis use Newton's method, although quasi-Newton methods,

' functions so that when applicable, may be more efficient. We here give
the Newton algorithm which is most easily described in

, 0 on r for j = I,...,N terms of the weak formulation. To further simplify the
" (17) presentation we introduce the bilinear forms

-Q.j0on r-ri  j N+MiI +....N+Hi andA(,) w ; d&2 for ,; t V (19)

for i = 0- .

and

where MI - 0 and N+Mm - J. Thus the first N B(*, ) = - u -curl di for ', t V, (20)
basis functions correspond to interior degrees of clfE

freedom or to degrees of freedom on r which are not
associated with function values and the basis functions
indexed by j - N+Mi I+I,...,N+Mi correspond to the the trilinear form

degrees of freedom associated with function values on
ri . For example, if Vh is a Lagrangian finite C(u,,) - ( 21( - 2- 2)d I for c V. (21)
element space, then * for j - 1,...,N correspond ;Y ax ay

to interior nodes whill 0 for J = N+i.I.....N+Mi
correspond to nodes on ri. Thus, in this example, N
is the number of nodes in the interior of Q and and the linear functionals

(Mi-MiI) are the number of nodes on ri  for
i - 0,...,m. We note that in a practical imple- F(O) -fcurl 0 dn and G(O) 0-1.df) for 0 C V.
mentation one would not choose to number the basis -f
functions according to (17). We merely choose that r
numbering scheme in order to simplify the exposition (22)

which follows.
Having chosen the numbering scheme (17), we may Then, (15-16) take the form

then substitute in (15-16)

A( h,C h) + B( h h) - G(;h) for all ;h C Vh , (23)

J.,. j-l h h h C hhh - (h h h
n (18) vB($,) + h, ,) - F() for all 0 C Va (24)
and

N i Newton's method for (23-24) is then given as follows.
....- ' i (x) + T q(x)0 (x) Given jo t Vh and e c Sh, we generate the sequence

j j iJ {(A)n ,-14+ for n > 1 by solving the linear system

h N+Hi A(n;h) + B(n,h = G(;h)  for all ;h C Vh (25)

+ h r
ila i  J. L 

j(

iN+M 1+l vB(h, Win) + C(Wn, ,n-l, h) + C(Wn-l, U, h) (26)

where denotes the coordinates of the J-th node and hh "

where we have approximated q on r by its boundary - F(Oh) + C(o n ,n- I ) for all C Va
interpolant. We may also choose, in (15-16),

?j~j ;h . Sk(X for k - .J and Oh - kX for;h.- k(x)f and h h skx r Due to the relatively small attraction ball of Newton's
k - . and 1Oh - L 1 (x) where the sum ranges method, it is convenient to start with the following

e (15-16) represent (+..) nonlinear algebraic equations simple iteration method which, at least at low Reynolds
for the ( n1+3n) unknowns a jr-i ,...,, utJi numbers, is globally convergent. Given wo t Vh and
J - 1,h ... N, and w i - 1 .... m. Be4 vh we generate the sequence {wn, pn} for n > 1

it low; we remarktV.
on how to solve this discrete system. by solving the linear system

S",For the case of the linear Stokes problem, the
weak formulation (15-16), where now the nonlinear terms n h (n, h h h h
in (16) are not present, leads, in an analogous manner AN c + B G() for all C t (27)

to a linear system of (N+J+m) algebraic equations. d

Nonlinear Solver . 1h"
,,B(h n) + C(n-, n:) F(¢h ) for all ht EV (28)

The nonlinear system of equations resulting from
(15-16) may be solved in a variety of ways. We are
articularly interested in preserving the feature that Thus the composite algorithm consists of doing a few

.ic 'undary conditions on the vorticity be imposed at steps, usually one or two, of (2-28) in order to get

tuundaries for which the velocity is known. This into the neighborhood of the solution of (23-24), and

~~~~ .s- * . . . . . .~ .~' . . . .. . .



then switching to Newton's method (25-26) in order to j, j - 1... . Furthermore, these equations and un-

more quickly home in on that solution. Note that the knowns may be ordered in such a way that the bandwidth

simple iteration algorithm (27-28), and therefore the of the discrete system is no larger than that obtain-

composite algorithm as well, do not need the initial able in an analogous discretization of a problem posed

guess ,1O to satisfy the boundary conditions. In in the simply connectrd domain bounded by 7o. Having

particular, we may choose .o - . 0. obtained 4" from ai -i 1. m, we may substitute
By methods similar to those used in [1,5.6] for the into (8). In practice, we would evaluate the integrals

primitive variable, i.e., velocity-pressure, formulation appearing in (8) by a numerical quadrature formula.
it can be shown that the Newton iterates defined by (.5- Let us denote such an approximation to each equation in

26) converge quadratically to a solution of (23-24) for (8) by Ii(ak), i = 1. ., which in general will not

a sufficiently close initial guess. Further remarks be small. Of course each 'i(-) is a nonlinear
concerning the solution of the discrete nonlinear function of ak (4i.a ) through the discrete
system (23-24) are made below when computational results vorticity 4h- We now need an al orithm to generate

are discussed. We note that either of the methods new guessesI ak+l, from which Pj+1 and q+l may be
(25-26) or (27-28) require the solution of a sequence computed and for which Ii(ak+l) is closer to zero
of linear algebraic systems, than was Ii(ak). The most practical way to accomplish

this is to use a secant type method. For example, if

Two Methods for Multiply Connected Domains m - 1, i.e., Q is doubly connected, we may then
define

As was previously discussed, the main difficulty
which multiply connected domains present is that the k k-l
streamfunction may be arbitrarily specified on only one k+l k - ae 1  1(ak (30)
part of the boundary. Thus, above, we have set 1P and a1  a1 - k k-l 1 1
o41 - 0 at one point on ro, but these are determined II(a 1 )-1 1 (al )
only up to the unknown constants ai and ah

respectively, on the remaining parts ri,  i-,...,m, For m > 1, some generalized secant method in Rm  such
of the boundary. In the discretization method repredsntd by (15-16), the constants ah  :- etrindas as the Wolfe secant method can be used. See [7] for
pated byo(1-6), the on stass. ov are determind details about such methods. Note that the use of

part of the solution process. owever, that metho formulas such as (30) requires two starting guesses a0

requires the use of and al. We also note that in general it is not -

practical to use Newton's method to update ak since
N+Mi evaluating the Jacobian of 1(a) - (Il,....Im) requires
I ('). i - 1...,m (29) the solution of linear problems of the same size as

JN+M-
+
1 (15-16) for each pair a/aai,  /aai.

Thus, at the price of solving a sequence of

simpler problems, one may avoid the bandwidth problems

as basis functions associated with the ah, i - 1,...,m engendered by the use of basis functions such as (29).
i , Whether or not the alternate method is more efficient

In general, these basis functions are only "semi-local" depends, of course, on how many of the simpler

in the sense that they couple all the points on a
boundary ri. In particular, in the discrete set of probles must be solved as well as on how much cheaper

e t 'h is coupled with all the unknovns it is to solve the simpler problems. Both of these
soieqatins with elements whose closures intersect wth factors, for a particular geometry, will depend on the

ai. The ree lt of thisws that the bandwidth of th number of degrees of freedom, i.e., the gridsize, and

i the Reynolds number. Therefore it is clear that the
linear systems encountered will be greatly increased,resulting in both a computer storage and time penalty performance of iterations such as (30) play a central
orersultingplybota computerdo toin agrob an me of ty role in the overall efficiency of the alternate method
over simply connected doain problems. Soe of this of treating multiply connected domains. Unfortunately,
penalty ray be itigated by oeployi ce a numbering the sequence ak generated by secant type methods arescheme resulting in banded-bordered matrices wherein ntgaate ocneg o rirr auso h

the onerous couplings are found near the bottom and the ot guaranteed to converge for arbitrary values of therigt f te etrce ecouteed.Thsof course, initial guesses, especially at high values of the
right of the matrices encountered. This, of couse Reynolds number. We will return to this point when we
requires the development of special programs to solve discuss some computational results below.
the linear systems.

An alternative to using basis functions such as Multiply Connected Domains in the Linear Case
(29) is to guess the value of the constants ai ,
i = 1'.-m, appearing in (5). Then one may solve for The situation for the alternate method discussed
'4 and ; from (1,2,5 and 6). However, in general, above is much simpler in the case of the linear Stokes

(8) will not be satisfied. At this point one may equations. In this case. I(a) is a linear function
change the guesses for the ails, repeating the process of the ails and thus, given any a°  and al, a secant
until convergence is achieved, i.e., until (8) is ofthe sh and(hus ie y a0  an a1  a eant
satisfied. In more detail, we proceed as follows. method such as (30) will yield that a is the exact

- 1k wedeie desired value ak. Furthermore, -and I are
Given guesses at, i -.... ,m, k e Z

+ , 
we define linear combinations of h and ,h, k - 0, , And thus

k and £ Vh where the former may be obtained from the latter without
solving another linear problem of the type (15-16)

where in (16) the nonlinear terms are omitted.

S- C H, (n) n W (); * q on r These observations may be used to define an even
simpler algorithm for the linear case which is equiva-

k lent to the above alternate method. First we solve
- on ri. i 1. ml, (m+l) discrete problems corresponding to the continuous

problems

to be the solution of (15-16) where now (16) holds for
all -h V - h -Hl(:.). In this case - is given

by (18) with ah replaced by the known numbers a)

and thus the discrete system (15-1b) contains (N+J)

equations for the (N4+J) unknowns j, j - 1,...., and

'4



h
-wk and -v.... curl f k i-W . We will consider the case of q - 0 and g " 0

= and of simply connected domains. Inhomogeneous

(31) problems can be treated by techniques similar to those

k k used in (8] for the primitive variable formulation of

k 
= 
qk on rO  k "

q  
o r, - i ....m Navier-Stokes equations and insofar as the accuracy of

the approximate solution, problems posed on multiply

and connected domains should behave in a manner similar to
those posed on simply connected domains. Furthermore,

k-- k. we will focus mostly on low order, low continuity
--T on finite element spaces, especially continuous piecewise

linear polynomial spaces.

where and fo f q 0 Most of the results available are concerned with
e 0 fk-O .. , = and c . 5, f or k > fo the linear Stokes problems in a simply connected domain

and -* 1,...,m. All of these problems involve The with homogeneous boundary data. Indeed, finite element

same left hand side, i.e., the same coefficient matrix discretizations of the particular weak form (9,13) are

in the discrete problem, and thus may be solved considered in [9-14]. All except for [133 and [14]

simultaneously by setting up (wrl) right hand sides. consider only the case of piecewise polynomial spaces

Now consider the combination of degree two or higher. The analyses of [14] improves
on the previous works, and it is the results of that
work which we sumarize here.

a m To begin with, we define the space of weakly
g- ° + I a&kk and " 0 + I akk (32) hae onic functions

k 1 k-1

where ak, k - 1 a....m, are constanta to be determined. H- { £ H
1

(2); J - df - 0 for all 0 o
Then, since the problems (31) are linear, we have that

At -Z and -V& - curl f in a We also define the norms

q on r 0  "q+ai on r i , i-,1 ..... m, I'lll sup -Z andIIl-,u -

and MH(l) r eH FI
on r.(34)

where It- for r e Z denotes a norm on H r(,).
Thus, for any values of the constants a, T and N ote that de first of these is not the norm on E-i(n),
satisfy the given Stokes problem (1,5,6 and 13). We the dual space of H(10), but we adopt this notation
fix the ai's by requiring that (14) be satisfied. for simplicity. A basic result is that the two
Indeed, denoting each of the integrals in (14) by norms of (34) are equivalent on H. (The proof of this
li(w), we see that since these are linear in w and the other statements concerning the linear case may

be found in [14].)
Now, recall that our arproximations are based on

0 - I ( ) + for i choosing a subspece Vh C H (n) which we will assume
I 0 k1l to be a continuous piecewise polynomial space, and then

(33) letting V
h 

- V
h l H(n). We may then define the space

of discrete weakly harmonic functions

Thus (33) is a linear system of a equations for the
a constants ak, k - l.... Having found these . h C V; curl Ch.curl h dh - 0 for all 0h .Co}
constants, than (32) yields the solution of the given 0;da

Stokes problem.
Of course, the use of the continuous problems (31)

was symbolic; in reality one solves the corresponding In general H C H. In fact, the lack of this in-

discrete problems and approximates the integrals clusion results in the non-optimality of the approxi-
I,(%) by numerical quadrature. In summary, we see

that in the linear case, we may solve multiply mations to w and also causes the main difficulty in

a single "simple" the analyses. Having defined Hh, we may also defineconnected domain problins by solving •snl"sme" the norm

.matrix problem, with multiple right hand sides,
evalustin8 the (m+l)a integrals It(wk), k - 0,...,m, h h

i" . ,m, solving the a x a linear system (33),

c. taking the linear combinations (32). On the 1 h 01 sup 6
ot band, one may solve the same problem by using h h

basis functions such as (29). In this case one need h CH h jkhIl
solve a single linear system with a single right hand
ide to obtain the solution. However, as noted above, -1hthis system will surely be more complicated than that -1 gerlheors !'*had]€ anOh

for the method (31-33), and it seems that, at least equivalent on Hh. However, for any -Eh and

fo erate values of m, the latter technique is c > 0 we have that for some constants C1  and C2,
pro Fer;;l•.

11 h 1 hj_1< C1 h, C h 1/2-C lh 11o.

Error Lstimte llhh Il h 1H *,h + 2

We now turn to a brief discussion of the available (36)

thmeretical estimates of the differences ._ h and



We next define the differences icur i 0 < lh 1 _ + + !curl e6

S- 1 1 0el

h hh h. eh h-
e, 1 2 R h w - and e 2  (A-% (37) < c1 li + C, h l/2-E1 1 eh1  + lie 1

1 2ehh 2 0 h,

where h C V is arbitrary and Rhw c V
h  

satisfies
0+ Ilcuri e 00.

Scurl(( -Rh).curl 0 hd 4 0 for all ,h C V h . cu ! o

r- r o0 Then (42) follows from (37), (45), and the triangleinequality, and (41) follows from (37), (44-46), and

(38) the triangle inequality.
If Hh C H, then Eg - 0 = 0. Thus (41) and (42)

Also, we note that from (9,13) with j - 0 and q - 0 yield that

and from its discrete analogue,

[curl .ur Oh d 0 for ali ° CV (39) j..j 1wRwj
Sicurl (_,h) 0 < 2 inf 11 curl( 0hfl + C 311-R hwlo

hhFvh
"rh h le .curl ; h df2 u+curl l.curl ;1d0 2 3

_(2_+__le -)d (e2cul )hJ ul J cr which are optimal estimates for the L -norm of the
vorticity and of the velocity field. Rnfor~unately,

for all rh 
h  (40) the inclusion HhC H implies that VC H (Q), i.e.,

Vh consists of continuously differentiable piecewise
polynomials. In this case we might as well have dis-

We then obtain that for any E > 0 and for some cretized, using Vh C H
2
(a), the fourth order stream-

constants Cy C4 and C5 , function formulation of the Stokes equations.
3' more interest to us here is the case of

Vh 
t (Q), e.g., Vh consisting of merely continuous

- h'° picewise polynomials. Examining (41) and (42) yields
0 _ 211z-Rhwll + 0  (41) that except for the terms involving ER and E, the% terms on the right hand sides are either approx mation

and theoretic, or, due to (38). can be approximated in
terms of approximation theoretic results [14]. Thus it
only remains to estim te, for specific choices of Vb,

-Ilcurl(*-*h)ll_ 2 inf hIIcur_( )j-h)I (42) the terms q and %. For example, if vh consist.
h^ h 0 of piecewise linear polynomials and if

O4' E H2 (0)) r) R1(0), then for any £ > 0 and j - 0,1,
it can be shown that

+ c3110-a1 o + C4  5 + C % h/ 2 -

where < . h f1'112

curl( 4 -4 h) curl d Then (41) and (42) yield, for linear finite element

inf s (43) spaces,

-hC h  [lhhol1
0 1wh , / h 11h1  1-I 01 -,h11  - 0(h11 ) and Ilcurl(P-h)I 0- O(hl- . (47)

for j - 0,1.

To prove (41) sad (42), first note that by (39), We note that (47) shows that the velocity field

e Hh  and from (40) with ;h £ Hh one easily u - curl 1P is optimally approximated and that there is

obtains that a 3/2 's loss in the exponent of h in the estimate
for W.

curl el.curl ;h dn For the nonlinear case, there are much fewer error
5- 

1
estimates available in the literature. In fact, forh "  < ' l (44) the particular method considered here, such estimates

, 11211- can only be found in [. Furthermore, these hold only
h1 for polynomial spaces of degree two or higher, and

yield suboptimal results. However, by combining the
nonlinear analysis of [1] with the improved analysis,

curl el.CUrl h CM for the linear problem, found in (14], results such as
those above can be reasonably expected to hold for the

Ih he 2  
(45upnonlinear problem as well.:legt° -1l211° + supI lho  (4s

oo 0 III - Remarks

Infinite Domain Problems - So far our considerations
Also (36) and (40) yield that have focused on problems which may be posed on bounded

e



Fv r

- domains. However" the streamfunction-vorticitv formu- that, by integrating by parts, that (48) may be viewed

lation may be especially useful for problems posed on formally as a discretization of the problem
exterior domains since for many such problems the
vorticity decays exponentially with the distance from
the origin while the velocity and pressure only decay Ap - p div(-u-Vu+ ,Au+ f) in 2
algebraically. Thus applying far field conditions on - -

% the vorticity can lead to substantially smaller compu-
tational regions than that needed for a computation of P- p(-u'-u+vtu+ f)-n on r.
the same accuracy using such conditions on the velocity. a --
We have also indicated in Section I how easily imple-

mented boundary conditions on the vorticity may be
useful in matching to external inviscid flows in Both of these may be obtained directly from (7) by

boundary layers and wake type calculations, respectively taking the divergence of (7) and the inner
product of (7) with u. Unfortunately, the right hand

Finite Difference Methods - It would be remiss not to side of (48) is not defined when one uses merely

point out that finite difference methods may also be continuous finite element spaces for ph and wh. The

implemented in such a manner that no artificial boundary problem is not Ith the viscous terms since, from the

condition on the vorticity is imposed at solid definition of u", we have that

boundaries. Indeed, the key to avoiding such a specifi-
cation is not the use of finite element methods.
Rather it is the willingness to solve the discrete Auh.Vph  f _a (Aph)da a dh
system (15-16) as one coupled set of equations as dil a da do (49)
opposed to iterating between (15) and (16). Thus, in r r
a finite difference method, one could discretize (1)
and (6) while making use of (5) as well, yielding more

equations than unknowns determining 4P as a function where the last equality is only approximate. The

of w and the boundary data. One also discretizes integral on the right is well defined, even for low

(2) without imposing any boundary condition on w, continuity spaces. The problematical term is the
yielding less equations than unknowns to "determine" convection term in (48) which is not defined for merely

w. In this manner one may not solve the discrete continuous spaces. However, for the linear case or

versions of (1,5,6) for 4' since that system is over- the nonlinear case with finite element spaces which are

constrained, and also one may not uniquely solve the at least continuously differentiable, one may use (48),

discrete version of (2) for w since that system is with the replacement (49), to solve for the pressure.

underconstrained. However, the above type of discreti- We now present a method for recovering the

zations of (1,2,5 and 6), taken together, may be solved pressure which works in all cases. First, (7) may be

simultaneously for * and w. We note that similar expressed in the form

observations about the relation of the discrete systems
resulting from (1,5,6) and (2) hold in the finite
element case. VH - p[(_V) +f+vAu] where H - (p+ 1 Puu), (50)

The method of treating multiply connected domains 
2

wherein one uses iterations such as (30) can clearly be
used in connection with finite difference methods where i.e., H is the total pressure head. Ye then consider
again one must approximately evaluate the constraint the problem of seeking H £ H

1
(n) n W'(02) such that

(8) or (14) in order to update the guessed values of

0 at the boundaries. Also in a straightforward
manner, one may implement the other method. Specifi- df. p (-ou.curl H+ f.H+vVH.Au)df

cally, one can leave the constants ai  in (5) as un- - +-A

knowns, and them add a discretization of (8) or (14) in
order to close the system of equations. However, we

note that in the finite element case (8) or (14), as
well as (6), are natural boundary conditions, and thus I J (-u-curl H + f-VH)d2 - pv H-do
are more easily satisfied. The same remarks concerning Q r

the relative efficiency, e.g., bandwidth size, of the 41
two methods which held for the finite element case also for all H t H(S) f (l)
hold in the finite difference case.

Recovery of the Primitive Variables - The computation which by additional integration by parts, is formally

of the velocity field from the streamfunction is a equi-,alent to
simple matter since we may define u

h 
=(;*h/ay,-a*h/ax).

The recovery of the pressure field is not so straight-
forward, especially for low continuity, e.g., merely AH p O curl(wu) + p div f in f2

continuous, finite element spaces. Formally, one (51)

wuld like to use (7) in the followinB ways FromJ7),
we define a discrete pressure ph C VA C Hp() n -V () on r.
such that

These, using div u - 0, may be derived directly from

7h.^h dh h Vuh+f) h (48) 50). Thus we are led to define an approximation
7p --Uh +V _h_)7(4 H

h 
C Vh, the same finite element space used for the

0 vorticity approximation, by the solution of the

for all h C V
h  following problem. We seek Hh E Vh such that

Su
h  

in the right hand side is obtained from the
.6K eadv computed approximate streamfunction ph. Note



[ 7h d. - * (f_ hb).7h d" (52) than the first technique and may be especially useful
for flows which are perturbations of two dimensional or
axially symmetric flows. In [161 a third technique is

f z, h dh h also discussed, namely letting - 7A x 7c which alsoda for all H C V involves only two scalar fields. However, this choice

rintroduces additional nonlinearities into the problem
which, in practice, is not desirable.

where now the right hand side is well defined for the
already computed values of h £ Vh and ,h £ Sh. IV - Computational Examples

* Once the approximate total head Rh is computed from
(52), the pressure is easily recovered from Accuracy - We first examine, through computational
ph - Hh - [( 7h)2 + (4h)2]/2. We note that the solution examples, the accuracy of the particular finite element

H of (52) corresponds to an approximate solution of methods discussed in Section II. The context of these
the Neumann problem (51). Thus Hh and therefore ph examples is smooth solutions of the linear Stokes
are determined only up to an additive constant, which equations posed on the unit square, i.e., a simply
is to be expected, connected domain. However, we note that the algorithms

have been successfully used to compute solutions of the
Three Dimensional Problems - The streamfunction- nonlinear Navier-Stokes equations. For example, in [4]
vorticity formulation of the Navier-Stokes equations these methods are used, in conjunction with a reduced
has not achieved the same interest or success in three basis/continuation technique, to compute accurate
dimensional setti.ngs as it has in two dimensions, approximations of driven cavity flows at Reynolds
However, recently there has been increasing attention numbers up to 10,000 using relatively coarse nonuniform

devoted to such problems. See, e.g., [15,16] for meshes.
finite difference approximations of three dimensional Some of the computational results for the Stokes
problems. equations are summrized in Tables I and 2 which

Since div u - 0, we have that necessarily respectively deal with piecewise linear and piecewise
-curl for s--ome vector valued function quadratic finite element spaces for both 4P and w.

variously called the '"vector streafunction" or the Each table gives the exact solutions for 0 and w.
"vector velocity potential". Of course, the vorticit In some of the cases of Table 2 this required the
is defined to be p - curl . The , the Navier-Stokes introduction of an inhomogeneity in (1), i.e., we have
equstioned in terms of the streamfuncthon arS" that A4 + c - a for some function . Other infor-
voricsty t, are given by mation contained in the tables is whether or not the

i ,boundary conditions on 4 and 34/an are homogeneous.

i.e., whether or not q and g in (5) and (6) vanish.
curl curl (53) and also whether a uniform grid or a graded nonuniform

grid was used in the calculations. Finally, each table
contains the computed rates of convergence of the

v curl curl 2 " curl V.' - !a.V(curl 1) (54) finite element approximations to i, and w as
measured in the L2 (n) and HIl(S) norms, i.e.,

- curl(_ x curl j). respectively the mean square errors in the function
values and in the derivatives. These rates were

At a boundary where u is specified, one would now computed by comparing errors on different grids.

specify curl--P. The most obvious trend in these results is that

As a consequence of their definition, it follows the streamfunction * and its derivatives are always
that I can be determined only up to the gradient of optimally approximated. On the other hand, there is

an arbitrary scalar function, and that div w - O. in general a loss of accuracy in the vorticity approxi-

There are various ways in which these facts have been mation. In particular, there seems to be a loss of one
used to simplify the formulation. For example, the power of h, the grid size, in the piecewise linear

arbitrariness in I can be pinned down by requiring case, and a loss of the 3/2 power of h in the

that div I - 0. This method, popular in electro- quadratic case. Thus the theoretical results of

magnetic problems where it is called the "Coulomb Section II seem to be sharp in both cases for the

gauge", has been used in [15] in connection with a streamfunction and also for the vorticity in the

finite difference solution of vortex flows in all of piecewise quadratic case. We also note that in the
R3 , i.e., a problem with no boundaries. In problems piecewise linear case we always obtain optimal approxi-

with solid boundaries, it becomes difficult to enforce mations to 4, and w whenever all boundary conditions

boundary conditions. The obvious disadvantage of this are homogeneous, e.g., see 1-4 in Table 1. This was

method is that there are six unknown scalar fields. not the case for the piecewise quadratic case, e.g.,

The main advantage of this method is that (53) and see 7 in Table 2. Finally, we have also found that
div ' * 0 imply that -AI_, -_, so that together with whenever the approximation to 4, is exact, i.e., '
(54), the governing equations may be viewed as coupled belongs to the approximating space, then the approxi-

*oisaon equations for the six scalar fields constitutin mation to w is optimal. See, e.g., 13 and 14 in

the components of I and w. Although more fields at Table 2. This result can be gleaned from (41) since

reqlid than in the primitive variable formulation in this case Eo - 0.

and an many as in the velocity-vorticity formulation, Multiply Connected Domains - We also report on some
the resulting streanfunction vorticity equations are
presumbly easier to solve. Furthermore, the finite preliminary computations for problems posed on multiply

elmnt, techniques discussed in this paper for the connected domains, namely with the view of comparing

plane flow setting extend in a straightforward manner the two methods of treating such problems and of
to the three dimensional method. examining their behavior as parameters, e.g., the gridAnother way of fixing the streamfunction is to size or Reynolds number, are varied. The domain .2

set one component, say the component *k, in the is the unit square, i.e., ro  is the boundary of that

x-direetion, to zero. The obvious advantage of this square, from which we have removed a rectangle. i.e.,

method, which was used successfully in [16] to compute r1  is the boundary of a rectangle contained within
compre sible flows, is that we have only two unknown the unit square. Thus, we deal with a doubly connected

streamfunction fields. In addition, as is indicated in domain. In all the computations we will have that q
[161, this method can handle solid boundaries better on conant o that par of thtoundary.

unknown constant on that part of the boundary.

:-. .-:...-> .> -..-..%



These preliminary computational results are 6. M. Ganzburger and J. Peterson, "On Conforming
summarized in Table 3. All computations were performed Finite Element Methods for the Inhomogeneous
using uniform grids of size h. Results for three Stationary Navier-Stokes Equations", Numer. .ath.,

* values of the Reynolds numbers Re - 1/v are given and 1983.
for both methods of treating multiply connected domains,
i.e., using iterations such as (30) to update guessed 7. J. Ortega and W. Rheinboldt, Iterative Solution of
values of the streamfunction on the boundaries or using Nonlinear Equations in Several Variables, Academic,
"semi-local" basis functions such as (29) to directly 1983.

, compute the approximate solution. The three problems
considered can be characterized by the boundary value 8. G. Fix, M. Gunzburger and J. Peterson, "On Finite
of 4) at the left and right boundar7.es and the Element Approximations of Problems Having Inhomo-
position of the hole. Specifically, we consider the geneous Essential Boundary Conditions", Comp. &
following problems: Maths. with Appls., 1983.

. (0y) (Iy)" 2y3_-3y32 Q - (/4,1/2) x (1/4,3/4) 9. I. Babuska, J. Osborn and J. Pitkaranta, "Analysis

of Mixed Methods Using Mesh Dependent Norms", Math.

2. same a, - (1/4,1/2) x (1/4,1/2) Comp., 1980.

2 10. F. Brezzi and P. Raviart, "Mixed Finite Element
3. i(0,y) lP(l,y) -y Q, - (2/5,3/5) x (2/5,3/5) Methods for 4-th Order Elliptic Equations", Topics

in Numerical Analvsis, III, Academic, 1977.

where 21 is the region bounded by r1 . The remaining 11. R. Falk and J. Osborn, "Error Estimate for Mixed
boundary conditions on *b are constant values at Methods", RAIRO, 1980.
y- 0 and 1 and a/an - 0 onall boundaries. We
note that the solution of Problem 1, due to symetries, 12. R. Scholz, "Approximation von Sattelpunkten mit
should have - a - -1/2 on r1 . We have also finiten Elementen", Bonner Math. Schriften, 1976.
computed with the boundary condition of Problem i or 2
with the concentric hole C1 - (1/4,3/4) x (1/4,3/4), 13. R. Scholz, "A Mixed Method for 4-th Order Problems
and due to the high symmetry of this configuration, the Using Linear Finite Elements", RAIRO, 1978.
exact value of a - -1/2 was computed for all values
of Re and h and for both methods. We also note 14. G. Fix, M. Gunzburger, R. Nicolaides and
that for the Re - 0 cases, i.e., for the linear J. Peterson, "Mixed Finite Element Approximations
Stokes equations, the results using the iterative for the Biharmonic Equation", Proc. 5-th Inter-
technique always converged in the expected one step. national Symposium on Finite Elements and Flow
Also, for the iterative method, the initial guesses for Problems, U. Texas, 1984.
the secant iteration (30) were ao - 1 and a1 - 2/3
in all cases. 15. J. Chamberlain and C. Lin, "Navier-Stokes

From these preliminary results it seems that at a Calculations for Unsteady Three-Dimensional
given value of h the direct method (B) yields better Vortical Flows in Unbounded Domains", AIAA paper
accuracy than the iterative method (A). Also compu- AIAA-84-0418, 1984.
tations at higher Reynolds numbers sometimes resulted
in the lack of convergence of the iterative method for 16. A. Sherif and M. afez, "Computation of Three
the above initial values. This is indicative of the Dimensional Transonic Flows Using Two Stream-
possible convergence problems of the iterative method, functions", Proc. 6-th AIAA Computational Fluids
Further and more detailed computational results will Conference, AIAA CP834, 1983.
be reported on elsewhere.
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Table 1. Computational results using piecewise linear polynomials. H x homogeneous,

I - inhomogeneous, L - uniform, N nonuniform. Exact . - -
-4

Exact solution Boundary conditions Grid Rates of convergence

in L in L
2  

in H
1  

in H

*. sin2 x sin2Ty H H U 2 2 1 1

2. same H H N 2 2 1

3. x2y2(x-l)2(y-l 2  H H N 2 2 1 1

4. .+ 3. H H U 2 2 1 1

5. cos ,y I H U 2 1 1 0

6. x2 (x-l) 2  I H U 2 1 1 0

Table 2. Computational results using piecewise quadratic polynomials. H - homogeneous,
* I - inhomogeneous. All examples use a uniform grid.

Exact solution Boundary conditions Rates of convergence
w. K /Dn in L 2 w in L 2 ) in H1 I in H1

7. L.+ 3. -1 H H 3.3 1.7 2 .6

8. 1 + sin2x -2r2cos21x I H 3 1.5 2 .5

9. x3 + y3 1 1 1 3 1.5 2 .5

10. same x + y I I 3 1.5 2 .5

11. same Xy I I 3 1.5 2 .5

12. same x2y 1 1 3 1.5 2 .5

13. x + y same I I exact 3 exact 2

14. x2 + y2 same I I exact 3 exact 2

Table 3. Computational results for doubly connected region problems using piecewise
linear functions; A - using iterative updating of i on boundaries,

B - using "semi-local" basis functions.

Re 0 Re 1 Re 10

b A B A B A B

1/4 -.417 -.494 -.418 -.495 -.429 -.507

1/8 -.466 -.496 -.468 -.497 -.487 -. 503

1/16 -.482 -.484 -.498 -.501 -.500

1/4 -.214 -.218 -.216 -.218 -.235 -.224

1/8 -.235 -.260 -.238 -.233 -.268 -.241

1/16 -.250 -.253 -.238 -.281 -.245

1/5 .372 .360 .371 .359 .348 .353

1/10 .377 .371 .374 .371 .347 .368

1/15 .378 .375 .373 .347

i
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